pyprika Documentation
Release 1.0.0

Paul Kilgo

February 16, 2014

Contents

pyprika Documentation, Release 1.0.0

Pyprika is a Python library for parsing and managing recipes. Its major features are:

* Support for recognizing a human-friendly representations of quantities and measurements normally seen in cook
books.

* Parsing a custom YAML spec for storing recipes on disk.
* A simple command line utility kit, which makes use of the library for recipe management.

Contents:

Contents 1

pyprika Documentation, Release 1.0.0

2 Contents

CHAPTER 1

pyprika package

The pyprika package contains the primary API.

1.1 Input and output

pyprika.load (fp, loader=None, **kw)
Load fp, a file-like object

The file is assumed to be a pyprika-compliant YAML document. If the document contains a sequence, a list of
Recipe objects will be returned. Otherwise, a single Recipe object should be returned.

Note that this function wraps the underlying exceptions thrown by Recipe.from_dict () under the as-
sumption it is due to a malformed document, but the original traceback is preserved.

Parameters
* fp (file-like) — the file-like object containing the document to load

* loader (callable) — takes one positional argument and optional arguments and returns a dict
(defaults to yaml . load)

o **kw — passed through to loader

Raises LoadError if there was an error in the loading of the document, usually indicative of a syntax
error

Returns the recipe data contained in the stream
Return type Recipe or list of Recipe

pyprika.loads (data, loader=None, **kw)
Load recipe from string data.

This wraps dataina cString.StringIO and calls load () onit.
See 1oad () for more information.

Parameters data (str) — recipe document data

Returns the recipe data contained in data

Return type Recipe or list of Recipe

pyprika.dump (recipe, fp, dumper=None, **kw)
Dump recipe to a file-like object

Parameters

pyprika Documentation, Release 1.0.0

* recipe (Recipe) — the recipe to dump
* fp (file-like) — the file stream to dump to

* dumper (callable) — a callable which takes two positional arguments, the first a dict and
the second a file stream, and optional keyword arguments and encodes the recipe to the file
stream (defaults to yaml.dump)

o **kw — passed through to dumper

pyprika.dumps (recipe, dumper=None, **kw)
Dump recipe object as a string.

This is a convenience method to dump to a StringlO object.
See dump () for parameter details.
Returns recipe encoded as a string

Return type str

1.2 API classes

1.2.1 Recipe
class pyprika.Recipe (name)
Class for representing a recipe.
Variables

* name (str) — human-friendly name of recipe
* index — optional application-specific indexing value
* servings — number of servings or a range (a 2-item tuple)
* source (str) — human-friendly source of recipe
* source_url (str) — URL source to for recipe
* prep_time (Quantity) — total preparation time for recipe
* cook_time (Quantity) — total cooking time for recipe
* notes (str) — miscellaneous data about recipe
* ingredients (/ist) — list of Ingredient objects
* directions (/ist) — list of instructions to prepare recipe

classmethod from_dict (d)
Creates a new recipe from a dictionary.

Parameters d (dict) — the dictionary to convert

Raises
¢ FieldError - if a field is missing, invalid, or not well-formed
e ParseError - if a Pyprika syntax error is present

Returns the resulting recipe

Return type Recipe

4 Chapter 1. pyprika package

pyprika Documentation, Release 1.0.0

to_dict (serialize=False)
Return a dictionary representing the Recipe.

Parameters serialize (bool) — convert as much as possible to primitive types
Returns a dictionary mapping attribute names to values

Return type dict

1.2.2 Ingredient
class pyprika.Ingredient (label, quantity=None)
Class for representing ingredients.
Variables
* label (str) — the label of the ingredient (like egq)
* quantity (Quantity) — the amount of the ingredient, if any

classmethod parse (s)
Parse an object from a string. Valid strings are of the form:

[(quantity)]label
Where quant ity must be valid syntax to Quantity.parse () and label is any text not beginning
with a value enclosed in parenthesis.

Parameters s (str) — string to parse

Raises ParseError on invalid syntax

Returns the resulting Ingredient

Return type Ingredient

1.2.3 Quantity
class pyprika.Quantity (amount=None, unit=None)
Class for representing quantity.
Quantities can either be a measurement (like 1 cup) or a dimensionless amount (like 12).
Variables
* amount — numeric amount of the quantity
* unit (str) — unit of the amount, if any

classmethod parse (s)
Parse an object from a string. Valid strings are of the form:

amount [unit]

Where unit is unconstrained and amount is one of the following:
ean integer, like 4
ea decimal number, like 4 . 5 (not scientific notation)
*a fraction, like 1/2

ea mixed number, like 1 1/2

1.2. API classes 5

pyprika Documentation, Release 1.0.0

Parameters s (str) — string to parse
Raises ParseError on invalid syntax
Returns the resulting Quantity

Return type Quantity

1.3 Exceptions

1.3.1 FieldError

class pyprika.FieldError
Raised when a constraint on a field is not met.

1.3.2 ParseError

class pyprika.ParseError
Raised on invalid syntax.

1.3.3 LoadError

class pyprika.LoadError (*args, **kwargs)
A blanket exception to catch if there was an error loading a recipe.

Variables cause — the original exception, if any

6 Chapter 1. pyprika package

CHAPTER 2

The kit utility

kit is a simple command line application of the pyprika library. It’s meant for recipe management via the command
line. It does require a little setup so that it knows where to find your recipes.

The name is somewhat a play on “kitchen” and “Git”.

2.1 The ~/ .kitrc file

Your . kitrc governs the behavior of kit. Upon startup, kit searches the paths defined in this configuration file
for recipes as well as the current directory.

For example, if this is in ~/ . kitrc:

paths:
- /home/paul/recipes
- /usr/local/share/recipes

Then it will search the paths /home/paul/recipes and /usr/local/share/recipes upon startup. The
default behavior is to do a shallow search. If you want it to do a recursive search:

recursive: True
paths:
- /home/paul/recipes
- /usr/local/share/recipes

That’s the basics. The reference should be enough.

2.2 Commands

kit is organized into subcommands, similar to a lot of other popular utilities you’re used to using.

Since it’s often inconsistent to refer to recipes by their name, kit indexes each recipe by taking the MDS5 hash of the
source file’s contents. This has its obvious flaws (the index changes when the file contents does), so this is only done
if a index has not been manually assigned in the source file.

2.2.1 Edit

Edits a recipe, using the first editor found in the environment variables KIT_EDITOR, EDITOR, and falling back on
pico.

pyprika Documentation, Release 1.0.0

Usage:

kit edit index

2.2.2 List

Lists recipes in the registry by their index and name.
Usage:

kit 1s

2.2.3 Show

Pretty-print a recipe to the command line. The recipe can optionally be scaled.
Usage:

kit show [-s|—-—-scale SCALE] index

2.2.4 Search

Search for a recipe by terms in the title. The search can be case-insensitive when the —1 flag is specified.

kit search [-1] search-term

2.2.5 Validate

Validate one or more input Pyprika recipes to verify it is correctly formed.

kit validate filename [filename...]

2.2.6 Which

Print the path to a recipe given its index.

kit which index

8 Chapter 2. The kit utility

CHAPTER 3

Pyprika’s YAML specification

Pyprika’s YAML format was developed from an export syntax used by the Paprika smartphone application with some

modifications primarily to make the syntax more rigid.
The following are the design goals of the syntax in order of importance:
* As little markup as possible
 Support the “natural” way of expressing cooking concepts
* Easily machine-processible where possible
This documentation will work from an example which utilizes all of the features to touch on:

name: Dumplings

index: DMP0001
servings: [4, 6]
source: The Internet
source_url: http://www.example.com/
prep_time: 5 min
cook_time: 45 min
notes: |
Piping hot!

ingredients:
- (1/2 tsp) baking powder
- (1 1/2 cup) flour
- salt
- pepper
(2 tbsp) olive oil
(4.5 cups) water

directions:
- Put it in a bowl.
- Mix ’"em up.
- Bake.

Though it looks verbose, the only required field is name. The rest can safely be left as their defaults.

3.1 Field descriptions

name The name of the recipe.

http://www.paprikaapp.com/help/android/

pyprika Documentation, Release 1.0.0

index An indexing field which is not used internally by the library, but can be used by applications to
refer to the recipe.

servings The number of servings the recipe produces. This may be an integer, or can be a 2-item list to
represent a range (e.g. 2 servings or 2-4 servings).

source An unrestricted field for noting the source of the recipe.

source_url An unrestricted field for noting the URL from which the recipe originates. No validation is
performed to ensure this is a URL.

prep_time The total time of preparation for the recipe. Must conform to quantity syntax.
cook_time The amount of cooking time for the recipe. Must conform to quantity syntax.
notes An unconstrained field for providing miscellaneous notes.

ingredients A list of ingredients needed for the recipe. Each item in the list must conform to ingredient
syntax.

directions A list of directions (in order) for preparing the recipe. The items of the list are unconstrained.

3.2 Ingredient syntax

Ingredient syntax has two primary forms: unquantified and quantified. The unquantified form simply means the
ingredient does not have an associated quantity, whereas the quantified form does.

3.2.1 Unquantified form
The unquantified form is the easiest to understand. The only restriction is the start of the string cannot contain
parenthesis. So all of the following are examples of the unquantified form:

e salt

* water (optional)

* black pepper

3.2.2 Quantified form

The quantified form has a quantity or measurement associated with it. They look the same as the unquantified form,
but with a measurement in parenthesis on the left. The following are all examples of the quantified form:

* (1 cup) water
* (1 1/2 cup) unbleached flour
e (1) apple (optional)

The text in the leading set of parantheses must follow the quantity syntax.

3.3 Quantity syntax

The quantity syntax is a means of expressing amounts, whether it be dimensionless (like a count) or dimensioned (like
1 cup). In general, the quantity syntax follows this form:

10 Chapter 3. Pyprika’s YAML specification

pyprika Documentation, Release 1.0.0

number [unit]

Where number is one of the following:
* anon-negative integer (e.g. 0, 12)
* a decimal point number (e.g. 1.5,2.75)
e afraction (e.g. 1/2,3/4)
e amixed number (e.g. 1 1/2,2 3/4)
Scientific notation is not supported for decimal point numbers.

unit is optional, and any text found after the number is considered a part of the unit. As an example, for1 1/2 f1l
oz,then 1 1/2 would be interpreted as the number and £1 oz would be interpreted as the unit.

3.3. Quantity syntax 11

pyprika Documentation, Release 1.0.0

12 Chapter 3. Pyprika’s YAML specification

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

13

pyprika Documentation, Release 1.0.0

14 Chapter 4. Indices and tables

Python Module Index

pyprika, 2?

15

